EFFICIENT TRANSFORMATION OF (Z)-2-BUTENE-1,4-DIOLS TO SUBSTITUTED FURANS WITH PYRIDINIUM CHLOROCHROMATE (PCC)

Hisao NISHIYAMA, Masaharu SASAKI, and Kenji ITOH*

School of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 440

(Z)-2-Butene-1,4-diols was were efficiently converted to the corresponding substituted furans by one step oxidation-dehydration process with pyridinium chlorochromate (PCC).

A versatile method for the construction of substituted furan skeletons via (Z)-2-butene-1,4-diols has not been achieved yet. In connection with our studies on the preparation of substituted maleic acid diesters, 2,3 we are interested in a new route for synthesis of 3- or 3,4-substituted furans via (Z)-2-butene-1,4-diols which are obtained readily from these maleates. We wish to describe here a highly efficient conversion of (Z)-2-butene-1,4-diols to substituted furans with pyridinium chlorochromate (PCC).4

Treatment of (Z)-2-butene-1,4-diols $\underline{1a}-\underline{1k}$ with PCC in dichloromethane at room temperature afforded substituted furans $\frac{2a-2k}{2}$ in high yields (Table 1).⁵ PCC has sufficiently acidic⁶ to cause the spontaneous dehydration of the intermediary hemiacetal B to furan 2.

Other oxidants were examined for this purpose with 1f (Entry 8-11). oxidation 7 gave $\underline{2f}$ in a low yield. Collins' oxidation 8 yielded a mixture of $\underline{2f}$ and butenolide, which was formed via rapid allylic oxidation of hemiacetal ${\tt B}$. With pyridinium dichromate (PDC) or active manganese dioxide 1f gave 2f in good to excellent yields. Treatment of 2-trimethylsilylmethyl-(Z)-2-butene-1,4-diol

Table 1. Transformation of (Z)-2-Butene-1,4-diols to Substituted Furans

			, a			b
Entry	(Z)-2-Butene-1,4-diol	<u> 1</u>	Reagenta	Substituted Furan	<u>2</u>	Yield(%) ^b
1	ОН	<u>la</u>	PCC	~~~	<u>2a</u>	81
2	OH OH	<u>1b</u>	PCC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>2b</u>	84
3	OH	<u>lc</u>	PCC	Y C.	<u>2c</u>	85
4	Me ₃ Si OH	<u>1d</u>	PCC ^C	Me ₃ Si	<u>2d</u>	20
5	"		$\operatorname{act.MnO}_2$,,		58
6	он	<u>le</u>	PCC		<u>2e</u>	91
7	ОН	<u>1f</u>	PCC		<u>2f</u>	91
8	"		PDC	,,		65
9	**		$\operatorname{act.MnO}_2$	"		84
10	"		Jones'	0		6
11	n		Collins'	2f + (45:55))	98
12	ОН	<u>1g</u>	PCC		<u>2g</u>	89
13	Ph OH OH	<u>1h</u>	PCC	Ph O	<u>2h</u>	35
14	OH OH	<u>1i</u>	PCC		<u>2i</u>	54
15	Ph OH OH	<u>1j</u>	PCC	Ph O	<u>2j</u>	54
16	он <u>1к</u>		PCC		<u>2k</u>	73

a. PCC (1.5-1.8 equiv. of $\underline{1}$) and 1 mmol of $\underline{1}$ in 12 ml of $\mathrm{CH_2Cl_2}$, r.t., 30 min. The reaction mixture was extracted with ether. After concentration, the residual oil was purified by silica gel column chromatography to give $\underline{2}$. PDC (2 equiv. of $\underline{1}$), r.t., 1 hr. Active $\mathrm{MnO_2}$ (ca. 50 equiv. of $\underline{1}$) in $\mathrm{CH_2Cl_2}$, r.t., 1 hr. b. Isolated yield. c. Buffered with sodium acetate (PCC/NaOAc=1). d. Determined by $\mathrm{^1}\mathrm{H-NMR}$.

1d with PCC gave the corresponding furan 2d in a low yield, because of lability of allylsilane skeleton of 1d in the acidic medium, whereas the oxidation with active manganese dioxide yielded 2d efficiently (Entry 5).

These (Z)-2-butene-1,4-diols were readily prepared by the following methods. 2-Substituted diols 1a-1d were prepared from dimethyl acetylenedicarboxylate (DMAD) via the stereoselective alkylation with organocopper-dimethyl sulfide 2 complexes followed by reduction with lithium n-butyldiisobutylaluminum hydride. 2,3-Disubstituted diols 1e-1g were prepared by palladium(0) catalyzed cotrimerization of DMAD and 1-olefins³ and following reduction with lithium n-butyldiisobutylaluminum hydride.

$$\begin{array}{c} \text{Dutylaluminum hydride.} \\ \text{MeOOC-C} \equiv \text{C-COOMe} \\ \text{b} \\ \text{R} \\ \text{COOMe} \\ \text{S} \\ \text{COOMe} \\ \text{S} \\ \text{COOMe} \\ \text{S} \\ \text{COOMe} \\ \text{COOMe} \\ \text{S} \\ \text{COOMe} \\ \text{S} \\ \text{COOMe} \\ \text{COOMe} \\ \text{S} \\ \text{COOMe} \\ \text{COOMe} \\ \text{S} \\ \text{COOMe} \\ \text{COOMe}$$

As an application of the present method, perillene 11, an ant's alarm pheromone, was synthesized from DMAD in this sequence via the corresponding maleate 2 and the (Z)-2-butene-1,4-diol 1c, and was obtained in 53% total yield. Thus, we have opened a new route for synthesis of 3- or 3,4-substituted furans from DMAD in three steps.

1- And 1,4-substituted diols 1h-1j were prepared by the alkylation of propargyl alcohols and the subsequent hydrogenation of butyne-1,4-diols 6 and 7.

HC
$$\equiv$$
 CCH₂OH $\xrightarrow{a,b}$ R_1 -CH-C \equiv CCH₂OH \xrightarrow{c} R_1 \xrightarrow{OH} OH OH

$$R_1 = Ph \longrightarrow 6a (90\%) \qquad 1h (88\%) \qquad 1i (95\%)$$

$$Ph \longrightarrow C \equiv CH \xrightarrow{a,d}$$
 $Ph \longrightarrow C \equiv C \longrightarrow OH \xrightarrow{OH} 7 (78\%)$ $OH \longrightarrow OH \xrightarrow{1j} (61\%)$

a. 2 EtMgBr, Et_20 , r.t.; b. R_1 CHO; c. H_2 , cat. Pd(0)-BaSO₄, TMEDA, $CaCO_3$, MeOH, r.t.; d. (CH₃)₂CHO.

Cyclohexadiene diol 1k was obtained by Diels-Alder reaction of DMAD and isoprene followed by reduction with lithium n-butyldiisobutylaluminum hydride. 12

a. benzene, 60°C, 1 day, in a sealed tube; b. Li (n-Bu)(i-Bu)₂AlH, toluene.

References

- a) Annual Reports in Organic Synthesis, J. McMurry, R.B. Miller, L.S. Hegedus, S.R. Wilson, L.G. Wade, Jr., and M.J. O'Donnel, Part IV, B (1970-1979), Academic Press. Also new useful methods for preparation of substituted furans were reported recently. See follows.
 - b) K. Inomata, S. Aoyama, and H. Kotake, Bull. Chem. Soc. Jpn., <u>51</u>, 930 (1978).
 - c) M. Stahle and M. Schlosser, Angew. Chem., Int. Ed. Engl., 18, 875 (1979).
 - d) Y. Kojima and N. Kato, Tetrahedron Lett., 4365 (1980).
 - e) After the submission of this paper, an independent paper on a similar transformation was reported; L.P.J. Burton and J.D. White, J. Am. Chem. Soc., 103, 3226 (1981).
- 2. H. Nishiyama, M. Sasaki, and K. Itoh, Chem. Lett., 1981, 905.
- 3. K. Itoh, K. Hirai, M. Sasaki, Y. Nakamura, and H. Nishiyama, Chem. Lett., 865 (1981).
- 4. E.J. Corey and J.W. Suggs, Tetrahedron Lett., 2467 (1975).
- 5. For these furans satisfactory spectroscopic data (NMR, IR, mass spectra) were obtained. ¹H-NMR(CDCl₃) δ ppm, 2a, 6.23(1H), 7.13(1H), 7.30(1H); 2b, 6.20, 7.20, 7.33; 2c, 6.20, 7.13, 7.20; 2d, 6.08, 7.01, 7.21; 2e, 7.07(s,2H); 2f, 7.07; 2g, 7.07; 2h, 5.94(1H), 6.22(1H), 7.23(1H): 2i, 5.95, 6.23, 7.26; 2j, 5.86(s, 2H); 2k, 7.12(s, 2H) as protons of furan rings.
- 6. a) E.J. Corey, H.E. Ensley, and J.W. Suggs, J. Org. Chem., <u>41</u>, 380 (1976).
 - b) E.J. Corey and D.L. Boger, Tetrahedron Lett., 2461 (1978).
 - c) W.G. Dauben and D.M. Michno, J. Org. Chem., $\underline{42}$, 682 (1977).
 - d) G. Piancatelli, A. Screttri, and M.D. Auria, Tetrahedron Lett., 219 (1977).
- 7. A. Bowers, T.G. Halsall, E.R.H. Jones, and A.J. Lemin, J. Chem. Soc., 2548 (1953); E.J. Eisenbrum, Org. Syn., <u>45</u>, 28 (1965).
- 8. J.C. Collins, W.W. Hess, and F.J. Frank, Tetrahedron Lett., 3363 (1968).
- 9. E.J. Corey and G. Schmidt, Tetrahedron Lett., 399 (1979).
- 10. G. Kovács, G. Galambos, and Z. Juvancz, Synthesis, 171 (1977); This reagent is superior for 1,2-reduction of α,β -unsaturated esters to lithium aluminum hydride or diisobutylaluminum hydride. With the latter hydrides $\underline{3}$ or $\underline{5}$ gave (Z)-2-butene-1,4-diols $\underline{1a}$ - $\underline{1g}$ (43-63%), but yielded concurrent conjugate reduction products (25-47%).
- 11. R. Bernardi, C. Cardani, D. Ghirighelli, A. Silva, A. Boggini, and M. Povan, Tetrahedron Lett., 3893 (1967).
- 12. D. Butina and F. Sondheimer, Synthesis, 543 (1980); The reduction of dimethyl 1-cyclohexene-1,2-dicarboxylate with diisobutylaluminum hydride and subsequent esterification work-up were reported to give the corresponding diol in 20% yield. Furthermore, it was reported that the diol afforded butenolide in 66% yield by oxidation with active manganese dioxide.

(Received July 15, 1981)